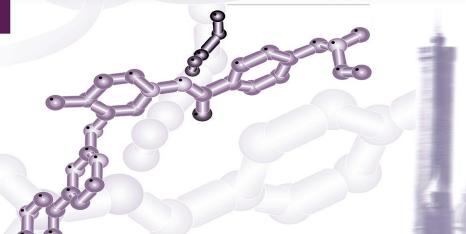


"Pirtobrutinib in Mantle Cell Lymphoma"


Michael Wang, MD Puddin Clarke Endowed Professor MD Anderson Cancer Center

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA DIPARTIMENTO DI MEDICINA SPECIALISTICA DIAGNOSTICA E SPERIMENTALE

SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Ospedaliero - Universitaria di Bologna

President: Pier Luigi Zinzani Co-President: Michele Cavo

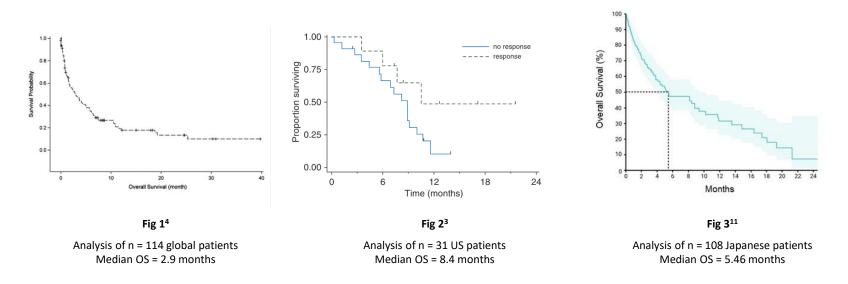
Bologna, Royal Hotel Carlton May 18-20, 2022

Disclosures of Michael Wang

Consultancy: AbbVie, AstraZeneca, BeiGene, BioInvent, CSTone, Deciphera, DTRM Biopharma (Cayman) Limited, Epizyme, Genentech, InnoCare, Janssen, Juno Therapeutics, Kite Pharma, Lilly, Loxo Oncology, Miltenyi Biomedicine GmbH, Oncternal, Pepromene Bio, Pharmacyclics, VelosBio

Research: Acerta Pharma, AstraZeneca, BeiGene, Biolnvent, Celgene, Genmab, Genentech, Innocare, Janssen, Juno Therapeutics, Kite Pharma, Lilly, Loxo Oncology, Molecular Templates, Oncternal, Pharmacyclics, VelosBio, Vincerx

Honoraria: Acerta Pharma, Anticancer Association, AstraZeneca, BeiGene, BGICS, Biolnvent, CAHON, Clinical Care Options, Dava Oncology, Eastern Virginia Medical School, Epizyme, Hebei Cancer Prevention Federation, Imedex, Janssen, Kite Pharma, Leukemia & Lymphoma Society, LLC TS Oncology, Medscape, Meeting Minds Experts, Miltenyi Biomedicine GmbH, First Hospital Zhejiang University, Moffit Cancer Center, Mumbai Hematology Group, OMI, OncLive, Pharmacyclics, Physicians Education Resources (PER), Practice Point Communications (PPC)

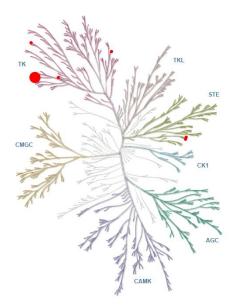

Pirtobrutinib, a Highly Selective, Non-Covalent (Reversible) BTK Inhibitor in Previously Treated Mantle Cell Lymphoma: Updated Results from the Phase 1/2 BRUIN Study

<u>Michael L. Wang</u>¹, Nirav N. Shah², Alvaro J. Alencar³, James N. Gerson⁴, Manish R. Patel⁵, Bita Fakhri⁶, Wojciech Jurczak⁷, Xuan Tan⁸, Katharine Lewis⁸, Timothy Fenske², Catherine C. Coombs⁹, Ian W. Flinn¹⁰, David J. Lewis¹¹, Steven Le Gouill¹², M. Lia Palomba¹³, Jennifer A. Woyach¹⁴, John M. Pagel¹⁵, Nicole Lamanna¹⁶, Jonathon B. Cohen¹⁷, Minal A. Barve¹⁸, Paolo Ghia¹⁹, Toby A. Eyre²⁰, Pier Luigi Zinzani²¹, Chaitra S. Ujjani²², Youngil Koh²³, Koji Izutsu²⁴, Ewa Lech-Maranda²⁵, Constantine S. Tam²⁶, Suchitra Sundaram²⁷, Ming Yin²⁸, Binoj Nair²⁸, Donald E. Tsai²⁸, Minna Balbas²⁸, Anthony R. Mato¹³, Chan Y. Cheah⁸

¹Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX; ²Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI; ³Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, EL; ⁴Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA; ⁵Florida Cancer Specialist / Sarah Cannon Research Institute, Sarasota, FL; ⁶Division of Hematology and Oncology, University of Carolina, Chapel Hill, NC; ¹⁰Sarah Cannon Research Institute of Oncology, Krakow, Poland; ⁸Linear Clinical Research and Sir Charles Gairdner Hospital, Perth, Australia; ⁹Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; ¹⁰Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN; ¹¹Plymouth Hospitals NHS Trust - Derriford Hospital, Plymouth, United Kingdom; ¹²Service d'hématologie clinique du CHU de Nantes, Angers, NeXT Université de Nantes, Nantes, France; ¹³Memorial Sloan Kettering Cancer Center, New York, NY; ¹⁴The Ohio State University Comprehensive Cancer Center, Columbia, OH; ¹⁵Center for Blood Disorders and Stem Cell Transplantation, Swedish Cancer Institute, Seattle, WA; ¹⁶Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY; ¹⁷Winship Cancer Institute, Emory University, Atlanta, GA; ¹⁸Mary Crowley Cancer Research, Dallas, TX; ¹⁹Università Vita-Salute San Raffaele and IRCCS Ospedate San Raffaele, Milano, MI, Italy; ²⁰Churchill Cancer Center, Royal, Kord, University Hospital, NFS condition Trust, Oxford, University Hospital, SHS Fundation Trust, Oxford, Japan; ²¹Institute of Hematology and Transfusion Medicine, Warsaw, Poland; ²⁸Pred Hutchinson Cancer Center, Royal Melbourne Hospital, and University of Melbourne, Melbourne, Melbourne, Melbourne, Melbaure, Australia; ⁷Department of Hematology and Medical Oncology, Japan; ²⁸Institute of Hematology and Transfusion Medicine, Warsaw, Poland; ²⁸Pred Hu

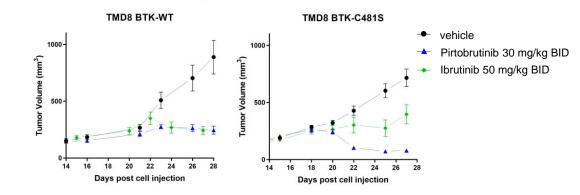
Outcomes in MCL are Extremely Poor Following Covalent BTK Inhibitor Progression

- Covalent BTK inhibitor resistance in MCL and other lymphomas is incompletely understood¹⁻¹⁰
- BTK C481-mutations are uncommon; bypass alterations & epigenetic changes implicated in some patients⁷
- Overall survival following covalent BTK inhibitor therapy is poor^{3,4,11}



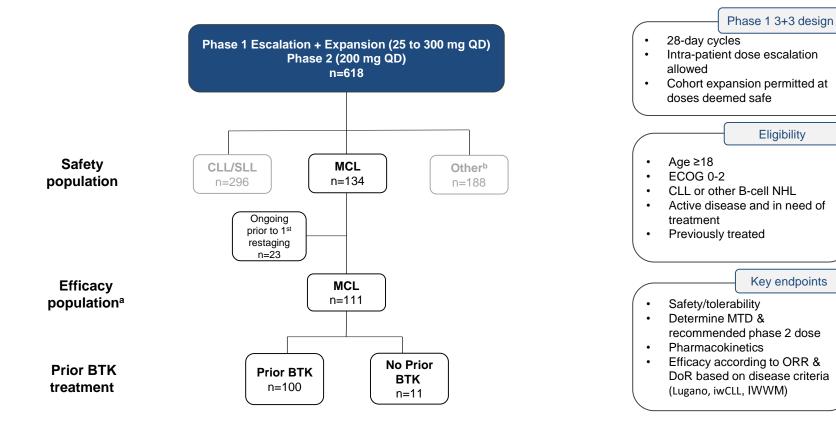
¹Hershkovitz-Rokah et al. Br J. Haemtol. 2018;181:306-19. ²Wang et al. N. Engl. J. Med. 2013;369:507-16. ³Cheah et al. Ann. Oncol. 2015;26:1175-79. ⁴Martin et al. Blood. 2016;127:1559-63. ⁵Dreyling et al. Lancet. 2016;387:770-8. ⁶Epperla et al. Hematol. Oncol. 2017;35:528-35. ⁷Ondrisova L and Mraz M, Front. Oncol. 2020;10. ⁸O'Brien et al. Clin Lymphoma Myeloma Leuk. 2018;18:648-57. ⁹Byrd et al. Blood. 2019;130(Suppl 1):4326. ¹⁰Tam et al. Blood. 2020;136:2038-50. ¹¹Rai et al. Clin Lymphoma Myeloma Leuk. 2021; 21(Suppl 1):S407-S408.

Pirtobrutinib is a Highly Potent and Selective Non-Covalent (Reversible) BTK Inhibitor


Kinome selectivity¹

Highly selective for BTK

Xenograft models


In vivo activity similarly efficacious as ibrutinib in WT; superior in C481S

- Nanomolar potency against WT & C481-mutant BTK in cell and enzyme assays²
- >300-fold selectivity for BTK vs 370 other kinases²
- Due to reversible binding mode, BTK inhibition not impacted by intrinsic rate of BTK turnover²
- Favorable pharmacologic properties allow sustained BTK inhibition throughout dosing interval²

BID, twice-daily; BTK, Bruton tyrosine kinase. ¹Mato et al, *Lancet*, 2021:397:892-901. ²Brandhuber BJ, et al. *Clin. Lymphoma Myeloma Leuk*. 2018.18:S216. Illustration reproduced courtesy of Cell Signaling Technology, Inc. (www.cellsignal.com).

Phase 1/2 BRUIN Study: Design, Eligibility and Enrollment

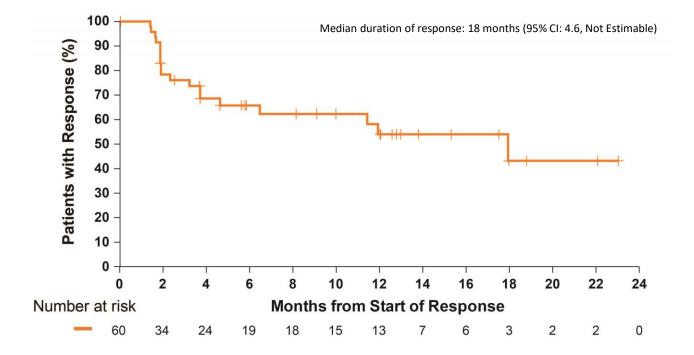
Data cutoff date of 16 July 2021. ^aEfficacy evaluable patients are those who had at least one post-baseline response assessment or had discontinued treatment prior to first post-baseline response assessment. ^bOther includes DLBCL, WM, FL, MZL, Richter's transformation, B-PLL, Hairy Cell Leukemia, PCNSL, and other transformation.

Patient Characteristics

Characteristics	MCL (n=134)
Median age (range), years	70 (46, 88)
Female / Male, n (%)	30 (22) / 104 (78)
Histology Classic Pleomorphic/Blastoid	108 (81) 26 (19)
ECOG PS, n (%) 0 1 2	82 (61) 50 (37) 2 (2)
Median number prior lines of systemic therapy (range)	3 (1, 9)
Prior therapy, n (%) BTK inhibitor Anti-CD20 antibody Chemotherapy Stem cell transplant ^b IMiD BCL2 inhibitor Proteasome inhibitor CAR-T PI3K inhibitor	120 (90) 130 (97) 122 (91) 30 (22) 23 (17) 20 (15) 17 (13) 7 (5) 5 (4)
Reason discontinued prior BTKi ^a Progressive disease Toxicity/Other	100 (83) 20 (17)

Data cutoff date of 16 July 2021. Total % may be different than the sum of the individual components due to rounding. ^aCalculated as percent of patients who received prior BTK inhibitor. ^b3 patients had both auto and allo stem cell transplants.

Pirtobrutinib Efficacy in Mantle Cell Lymphoma


BTK Pre-Treated MCL Patients ^a	n=100			
Overall Response Rate ^b , % (95% CI)	51% (41-61)			
Best Response				
CR, n (%)	25 (25)			
PR, n (%)	26 (26)			
SD, n (%)	16 (16)			
BTK Naive MCL Patients ^a	n=11			
Overall Response Rate ^b , % (95% CI)	82% (48-98)			
Best Response				
CR, n (%)	2 (18)			
PR, n (%)	7 (64)			
SD, n (%)	1 (9)			

Efficacy also seen in patients with prior:

- Stem cell transplant (n=28): ORR 64% (95% CI: 44-81)
- CAR-T therapy (n=6): ORR 50% (95% CI: 12-88)

Data cutoff date of 16 July 2021. Data for 20 MCL patients are not shown in the waterfall plot due to no measurable target lesions identified by CT at baseline, discontinuation prior to first response assessment, or lack of adequate imaging in follow-up. *Indicates patients with >100% increase in SPD. ^aEfficacy evaluable patients are those who had at least one post-baseline response assessment or had discontinued treatment prior to first post-baseline response assessment. ^bORR includes patients with a best response of CR and PR. Response status per Lugano 2014 criteria based on investigator assessment. Total % may be different than the sum of the individual components due to rounding.

Pirtobrutinib Duration of Response in Mantle Cell Lymphoma

- Median follow-up of 8.2 months (range, 1.0 27.9 months) for responding patients
- 60% (36 of 60) of responses are ongoing

Pirtobrutinib Safety Profile

	All doses and patients (n=618)						
	Treatment-emergent AEs, (≥15%), %					Treatment-related AEs, %	
Adverse Event	Grade 1	Grade 2	Grade 3	Grade 4	Any Grade	Grades 3/4	Any Grade
Fatigue	13%	8%	1%	-	23%	1%	9%
Diarrhea	15%	4%	<1%	<1%	19%	<1%	8%
Neutropenia ^a	1%	2%	8%	6%	18%	8%	10%
Contusion	15%	2%	-	-	17%	-	12%
AEs of special interest ^b							
Bruising ^c	20%	2%	-	-	22%	-	15%
Rash ^d	9%	2%	<1%	-	11%	<1%	5%
Arthralgia	8%	3%	<1%	-	11%	-	3%
Hemorrhage ^e	5%	2%	1% ^g	-	8%	<1%	2%
Hypertension	1%	4%	2%	-	7%	<1%	2%
Atrial fibrillation/flutter ^f	-	1%	<1%	<1%	2% ^h	-	<1%

No DLTs reported and MTD not reached 96% of patients received ≥1 pirtobrutinib dose at or above RP2D of 200 mg daily 1% (n=6) of patients permanently discontinued due to treatment-related AEs

Conclusions

- Pirtobrutinib demonstrates promising efficacy in MCL patients previously treated with BTK inhibitors, a
 population with extremely poor outcomes
- Favorable safety and tolerability are consistent with the design of pirtobrutinib as a highly selective and non-covalent (reversible) BTK inhibitor
- A randomized, global, phase 3 trial comparing pirtobrutinib with investigator's choice of covalent BTK inhibitors in BTK naïve relapsed MCL is ongoing (BRUIN MCL-321; NCT04662255)